Carburo de wolframio frente a titanio y sus prestaciones y usos.

Metal materials are one of the materials widely used in industrial production and daily life. Among the many metal materials, there is a metal material known as the “most wear-resistant” that has attracted much attention. This metal material has excellent wear resistance and can maintain a stable surface state in harsh environments. It has been widely used and favored.

Carburo de wolframio frente a titanio

En primer lugar, uno de los materiales metálicos más resistentes al desgaste es el carburo de tungsteno. El carburo de wolframio es un compuesto de wolframio y carbono de gran dureza y resistencia al desgaste. Por ejemplo, varillas y barras de carburo de tungsteno y placas de carburo de tungsteno suelen utilizarse como materiales para herramientas, como cuchillas, brocas, abrasivos y matrices de estampación. Pueden mantener una buena resistencia al desgaste en condiciones de fricción a alta velocidad y carga pesada, por lo que se utilizan ampliamente en el procesamiento mecánico, la minería y otros campos.

La tabla siguiente es la tabla de rendimiento del carburo de wolframio:

WCCoGranulometría (μm)Dureza(HRA)Densidad(g/cm³)TRS (Mpa)
70%-97%3%-30%0.2-7.982-9413-161000-3000

En segundo lugar, aleación de titanio is also a metal material with excellent wear resistance. Titanium alloy has good corrosion resistance and high strength, as well as high hardness and wear resistance, so it is widely used in aerospace, shipbuilding, medical equipment and other fields. The wear resistance of titanium alloy enables it to maintain stable performance in harsh environments, and has received widespread attention and application.

La tabla siguiente es la tabla de rendimiento de la aleación de titanio:

Densidad(g/cm³)Tracción (Mpa)Rendimiento (Mpa)Módulo elástico(GPa)CTE((10^-6/K))λ (W/(m-K))
4.43830-880750-790110-1148.4-8.76.7-7.2

Thirdly, Chemical formula: TiC (Titanium Carbide), molecular weight: 59.89. Gray metallic solid with a face-centered cubic lattice. Melting point: 3140±90 °C, boiling point: 4820 °C, relative density: 4.93. Hardness greater than 9. Insoluble in water, soluble in nitric acid and aqua regia. Stable in air below 800 °C, eroded by air above 2000 °C, and reacts with pure O₂ at 1150 °C. Preparation: Obtained by the high-temperature reaction of a mixture of titanium powder (derived from the hydrogen reduction of TiO₂) and carbon, or by heating compacted blocks of TiO₂ and carbon powder in an electric furnace at 2300-2700 °C under an H₂ or CO atmosphere for carbonization.

Densidad(g/cm³)Bending strength (Mpa)Dureza Mohs    Módulo elástico(GPa)CTE((10^-6/K))λ (W/(m-K))
4.93507-8559-10‌4707.7421

Applications include:

Cutting tools: As a main component or coating of carbide tools (e.g., turning tools, milling cutters) for high-speed cutting of steel.
Wear-resistant components: Such as mechanical seal rings, wire drawing dies, and sandblasting nozzles.
Coating material: Forms an extremely hard titanium carbide coating on the surface of tools and molds through physical or chemical vapor deposition (PVD/CVD) processes, significantly extending their service life.
Aerospace: Used in manufacturing components requiring high-temperature resistance and wear resistance.
Reinforcement phase: Added as reinforcing particles to metal-matrix or ceramic-matrix composites to enhance the strength and hardness of the base material.

titanium carbide vs tungsten carbide

It is actually difficult to give a clear answer about the life of titanium carbide, tungsten carbide and titanium alloy, because it is closely related to the specific use environment, load conditions, maintenance and other factors. Under appropriate conditions, both alloys can show a long service life. However, in some specific scenarios, tungsten alloy may have a longer service life due to its high hardness and high wear resistance; in other scenarios, titanium alloy may have better durability due to its light weight and high strength.

En resumen, el carburo de tungsteno frente al titanio son materiales metálicos con una buena resistencia al desgaste, y se han utilizado ampliamente en diferentes campos. La resistencia al desgaste de estos materiales metálicos les permite mantener un rendimiento estable en entornos difíciles, proporcionando un apoyo importante para la producción industrial y la vida cotidiana. Debemos hacer consideraciones exhaustivas basadas en los requisitos específicos de la aplicación, las condiciones ambientales y los requisitos de rendimiento. Sólo así podremos aprovechar al máximo el potencial de estas dos aleaciones y conseguir el mejor rendimiento y vida útil.

es_ESES
Scroll al inicio